Blood Glucose Meters
Overview
Blood glucose meters and other home medical devices today are small, portable, and easy to use. The mark of a good meter is one that the patient will use regularly and that returns accurate and precise results. Over the past few years the trend with blood glucose meters has been to maximize patient comfort and convenience by reducing the volume of the blood sample required. The blood sample size is now small enough that alternate-site testing is possible. This eliminates the need to obtain blood from the fingers and greatly reduces the pain associated with daily testing. Accurate and precise results have been increased by using better test strips, electronics, and advanced measurement algorithms. Other conveniences include speedy results, edge fill strips, and illuminated test strip ports, to name just a few.Meter Types
There are continuous and discrete (single-test) meters on the market today, and implantable and noninvasive meters are in development. Continuous meters are by prescription only and use a subcutaneous electrochemical sensor to measure at a programmed interval. Single-test meters use electrochemical or optical reflectometry to measure the glucose level in units of mg/dL or mmol/L.The majority of blood glucose meters are electrochemical. Electrochemical test strips have electrodes where a precise bias voltage is applied with a digital-to-analog converter (DAC), and a current proportional to the glucose in the blood is measured as a result of the electrochemical reaction on the test strip. There can be one or more channels, and the current is usually converted to a voltage by a transimpedance amplifier (TIA) for measurement with an analog-to-digital converter (ADC). The full-scale current measurement of the test strip is in the range of 10µA to 50µA with a resolution of less than 10nA. Ambient temperature needs to be measured because the test strips are temperature dependent.

Electrochemical blood glucose meter.
Optical-reflectometry test strips use color to determine the glucose concentration in the blood. Typically, a calibrated current passes through two light-emitting diodes (LEDs) that alternately flash onto the colored test strip. A photodiode senses the reflectedlight intensity, which is dependent on the color of the test strip, which, in turn, is dependent on the amount of glucose in the blood. The photodiode current is usually converted to a voltage by a TIA for measurement with an ADC. The full-scale current from the photodiode ranges from 1µA to 5µA with a resolution of less than 5nA. Ambient temperature is required for this method.

Optical-reflectometry blood glucose meter.
Test-Strip Calibration
The test strips usually need to be calibrated to the meter to account for manufacturing variations in the test strips. Calibration is done by entering a code manually or by inserting a memory device from the package of test strips. An EPROM or EEPROM memory device enables additional information to be transferred, which is a significant advantage over manually entering a code. A 1-Wire® memory device provides an additional benefit, because the unique serial identification number in each 1-Wire device ensures that the proper test strip is used.Some meters use test strips that do not require any coding by the user. This "self-calibration" can be accomplished three ways: with tight manufacturing controls, built-in calibration on each test strip, or built-in calibration on a pack of test strips loaded into the meter. A pack of test strips inside the meter also facilitates testing because these often small strips do not need to be handled and inserted by the user.

Functional block diagram of a blood glucose meter. For a list of Maxim's recommended glucose-meter solutions, please go to: www.stg-maximintegrated.com/glucose.
Glucose Meter Solutions
Accuracy and Precision
Both optical-reflectometry and electrochemical meters need to resolve currents in the single-digit nano-amp range. To meet the error budget for a meter, components must have extremely low leakage and drift over supply voltage, temperature, and time once the meter has been calibrated during manufacture. An operational amplifier's key specifications are ultra-low input bias current (< 1nA), high linearity, and stability when connected to a capacitive electrochemical test strip. The operational amplifier is typically configured as a TIA for both types of meters. A voltage reference's key specifications include a temperature coefficient less than 50ppm/°C, low drift over time, and good line and load regulation. A 10- or 12-bit DAC is used to set the bias voltage for an electrochemical test strip and to set the LED current for an optical-reflectometry test strip. Sometimes a comparator is employed with electrochemical test strips to detect when blood has been applied to the test strip. This saves power while waiting for blood to be applied to the test strip, and ensures that the reaction site is fully saturated with blood. The ADC requirements vary depending on the type of meter, but most require ≥ 14-bit resolution and low noise for repeatable results. Sometimes 12-bit resolution is used when there is a programmable gain stage before the ADC to extend the dynamic range.Temperature Measurement
Ideally, the temperature of the blood on the test strip should be measured, but usually the ambient temperature near the test strip is measured. Temperature measurement accuracy varies by test-strip type and chemistry, but is typically in the ±1°C to ±2°C range. This measurement can be accomplished with stand-alone temperature-sensor ICs, or with a remote thermistor or PN junction together with an ADC. Using a thermistor in a half-bridge configuration driven by the same reference as the ADC provides more accurate results because this design eliminates any voltage-reference errors. Remote or internal PN junctions can be measured with highly precise integrated analog front-ends (AFEs).Electrochemical Test-Strip Configurations
Most test strips are proprietary and vary by meter manufacturer. The variations include the reagent formulation, the number of electrodes, the number of channels, and biasing method of the reagent. The simplest configuration is a self-biased test strip (Figure 1) which has two electrodes with current measured at the working electrode and the common electrode grounded. There can be multiple channels on a single test strip; the additional channels are used for a reference measurement, initial blood detection, or to ensure that the blood has saturated the reaction site.
Figure 1. Electrochemical test strip in a self-biased configuration.
An alternate configuration actively drives both electrodes and measures at the common electrode.
Another more advanced design is a counter configuration (Figure 2). Here there are three electrodes with current measured at the working electrode and a force-sense circuit drives the common and reference electrodes. There is an important advantage to this configuration: the bias voltage at the reaction site on the test strip is set and maintained more accurately throughout the measurement. The disadvantage of this design is its additional complexity and the larger headroom required to allow the force-sense amplifier to swing negative to maintain the bias voltage during current flow.

Figure 2. Electrochemical test strip in a counter configuration.